1. Mode hybridization and radiative properties of an artificial atom coupled to a Josephson junction array, K. S., S. A. Khan, H. E. Türeci (Draft in preparation)

  2. Collective directional emission from distant emitters in waveguide QED, P. Solano, P. Barberis-Blostein, K.S., arXiv:2108.12951(2021)

  3. Observation of vacuum-induced collective quantum beats, H. S. Han, A. Lee,K. S., F. K. Fatemi, and S. L.Rolston, Phys. Rev. Lett. 127, 073604 (2021)

  4. Dissipative dynamics of a particle coupled to field via internal degrees of freedom, K. S., A. E. Rubio Lopez, Y. Subasi, Phys. Rev. D 103, 056023 (2021).

  5. Mechanical Quantum Sensing in the Search for Dark Matter, D. Carney, G. Krnjaic, D. C. Moore, C. A. Regal, G. Afek, S. Bhave, B. Brubaker, T. Corbitt, J. Cripe, N. Crisosto, A. Geraci, S. Ghosh, J. G. E. Harris, A. Hook, E. W. Kolb, J. Kunjummen, R. F. Lang, T. Li, T. Lin, Z. Liu, J. Lykken, L. Magrini, J. Manley, N. Matsumoto, A. Monte, F. Monteiro, T. Purdy, C. J. Riedel, R. Singh, S. Singh, K. S., J. M. Taylor, J. Qin, D. J. Wilson, Y. Zhao, Quantum Sci. Technol. 6, 024002 (2021).

  6. Collective radiation from distant emitters, K. S., A. Gonzalez-Tudela, Y. Lu, P. Solano, Phys. Rev. A 102, 043718 (2020).

  7. Quantum Brownian motion  from Casimir-Polder interactions, K. S. and Y. Subasi, Phys. Rev. A 101, 032507 (2020).

  8. Non-Markovian dynamics of collective atomic states coupled to a waveguide, K. S., P. Meystre, and  P. Solano, Proc. SPIE 11091, Quantum Nanophotonic Materials, Devices, and Systems 2019, (2019).

  9. Non-Markovian collective emission from macroscopically separated emitters, K. S., P. Meystre, E. A. Goldschmidt, F. K. Fatemi, S. L. Rolston,  and  P. Solano, Phys. Rev. Lett.  124, 043603 (2020).

  10. Collective effects in Casimir-Polder forces, K. S., B. P. Venkatesh, and P. Meystre, Phys. Rev. Lett. 121, 183605 (2018).

  11. Repulsive Casimir-Polder forces on a magnetic particle, K. S., Phys. Rev. A 97, 032513  (2018).

  12. On-chip quantum interference of a superconducting microsphere, H. Pino, J. Prat-Camps, K. S., B. P. Venkatesh, and O. Romero-Isart, Quantum Sci. Technol. 3, 025001 (2018).

  13. Mirror-Field Entanglement in a Microscopic model for Quantum Optomechanics, K. S., S.-Y. Lin, and B.L. Hu, Phys. Rev. A 92, 023852 (2015).

  14. Trapping atoms using nanoscale quantum vacuum forces, D. E. Chang, K. S., J. M. Taylor, and H. J. Kimble, Nat. Commun. 5, 4343 (2014).

  15. Effect of Interatomic Separation on Entanglement Dynamics in a Two-Atom Two-Mode Model, K. S., N. I. Cummings, and B. L. Hu, J. Phys. B 45 035503 (2012).

  16. Protecting and Dynamically Generating Entanglement in a Two-Atom Two-Field-Mode Model, K. S., N. I. Cummings, and B. L. Hu, arXiv:1004.1834 (2010).

  17. Generation of polarization-entangled photons using type-II doubly periodically poled lithium niobate waveguides, K. Thyagarajan, J. Lugani, S. Ghosh, K. S., A. Martin, D. B. Ostrowsky, O. Alibart, and S. Tanzilli, Phys. Rev. A 80, 052321 (2009).

  18. Generation of Polarization Entangled Photons from Type-II Domain Engineered PPLN Waveguides, K. Thyagarajan, K. S., J. Lugani, S. Ghosh, O. Alibart, D. Ostrowsky, and S. Tanzilli, Conference proceedings in Frontiers in Optics 2009/Laser Science XXV/Fall 2009 (OSA, San Jose, 2009)